photocatalytic degradation of some organic dyes under solar light irradiation using tio2 and zno nanoparticles

Authors

mojtaba amini

mahdi ashrafi

abstract

nanoparticles of the zno and tio2 were synthesized and the physicochemical properties of the compounds were characterized by ir, x-ray diffraction (xrd), scanning electron microscopy (sem) and transmission electron microscopy (tem). the xrd patterns of the zno and tio2 nanoparticles could be indexed to hexagonal and rutile phase, respectively. aggregated nanoparticles of zno and tio2 with spherical-like shapes were observed with particle diameter in the range of 80-100 nm. these nanoparticles were used for photocatalytic degradation of various dyes, rhodamine b (rhb), methylene blue (mb) and acridine orange (ao) under solar light irradiation at room temperature. effect of the amount of catalyst on the rate of photodegradation was investigated. in general, because zno is unstable, due to incongruous dissolution to yield zn(oh)2 on the zno particle surfaces and thus leading to catalyst inactivation,the catalytic activity of the system for photodegradation of dyes decreased dramatically when tio2 was replaced by zno.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles

Nanoparticles of the ZnO and TiO2 were synthesized and the physicochemical properties of the compounds were characterized by IR, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD patterns of the ZnO and TiO2 nanoparticles could be indexed to hexagonal and rutile phase, respectively. Aggregated nanoparticles of Z...

full text

Degradation of Diclofenac Sodium under Solar Light Irradiation by Photocatalytic Performance of ZnO and V2O5

Pharmaceutical pollutants are one of the most important issues of modern life and their negative effects on the environment and human health are undeniable. In the present work, the effectiveness of the photocatalytic process was studied by two semiconductors (ZnO and V2O5) in order to remove the Diclofenac Sodium completely under solar irradiation. The study examined the impact of parameters s...

full text

Enhancing Photocatalytic Activity of Nitrogen Doped TiO2 for Degradation of 4-Chlorophenol under Solar Light Irradiation

The nitrogen doped TiO2 as heterogeneous photocatalyst via sol-gel method were successfully synthesized. The physicochemical, morphological and textural characteristics of the obtained TiO2 samples were characterized by advanced analysis techniques. The photocatalytic activity of the samples were evaluated for degradation of 4-CP under solar irradiation. The as-synthesized photocatalysts were c...

full text

Comparison between the photocatalytic degradation of single and binary azo dyes in TiO2 suspensions under solar light irradiation

Textile industries discharge a large quantity of colored wastewater which is harmful to the ecosystem. In this study, two kinds of dyes were investigated: the mono azo Acid Orange 7 (AO7) and diazo Reactive Green 19 (RG19). The photocatalytic degradation of single (AO7, RG19) azo dye and binary (AO7 and RG19 mixture) azo dye aqueous solutions was photocatalyzed by commercial titanium dioxide (T...

full text

Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation

Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with ...

full text

Comparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light

The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...

full text

My Resources

Save resource for easier access later


Journal title:
nanochemistry research

Publisher: iranian chemical society

ISSN 2423-818X

volume 1

issue 1 1999

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023